Multi-scale movement of demersal fishes in Alaska

Julie Nielsen
UAF SFOS

Advisor:
Dr. Andrew Seitz

Rasmussen Fisheries Research Center Fellowship
Progress Report - March 8, 2011
Thank you!

• Committee:
 – Andrew Seitz (Advisor)
 – Milo Adkison
 – Franz Mueter
 – Tim Loher (IPHC)
 – Susanne McDermott (NOAA AFSC)
Background

- Demersal fish: focal species
 - Pacific halibut
 - Sablefish
 - Pacific cod
- High value
 - Commercial
 - Ecological
 - Cultural
Background

• Current issues
 – Pacific cod
 • Area closures in Aleutians – Steller sea lions
 – Pacific halibut
 • Decreasing allowable catch, local depletion?
 – Sablefish
 • Future issues?
Background

IPHC Management Areas
Background

• Current methods
 – Two points in time only
 • Release and recovery locations

• New movement methods desperately needed!!!
 – Migration timing
 – Spawning locations
 – Migration pathways
Background

Geomagnetic archival tags
Research overview

Multi-scale movement of demersal fishes in Alaska

- Fine-scale movement (Chapter 1)
 - Acoustic telemetry
 - Daily movement characteristics
 - Pacific halibut in Glacier Bay

- Large-scale movement (Chapters 2 & 3)
 - Geomagnetic archival tags
 - Reconstruct migration pathways
 - Pacific halibut, sablefish, Pacific cod (?)
Chapter 1

“Fine-scale movement and environmental correlates for Pacific halibut during summer in Glacier Bay, Alaska”

• Acoustic telemetry data
• Collected 1991 - 1993
• NPS collaboration:
 – Revise
 – Publish
Chapter 1

• Progress
 – On-going data analysis:
 • Characterization of movement patterns
 • Movement rates
 • Habitat associations
 – Kernel density “core areas”
 – Bootstrap method

• Future
 – Draft manuscript and submit for publication
 – Incorporate fine-scale data into movement model (chapter 3)
Chapter 2

“Using geomagnetic tags to examine movement of marine fishes in Alaska”

- Framework for using geomagnetic archival tags in Alaska
- Precision of geolocation estimates
 - Different regions
 - Different movement trajectories
- Resource for designing movement studies
Chapter 2

- Progress:
 - Mapped magnetic fields
Chapter 2

- **Progress:**
 - Deployed stationary and mobile test tags
 - Juneau area
 - Gulf of Alaska (2010 annual sablefish survey)
 - Aleutians (2010 IPHC survey)
Chapter 2

- Progress:
 - Tag measurement resolution
 - Estimated geolocation precision
 - Tag calibration
 - Temperature effects
Chapter 2

• Future:
 – Map magnetic field anomalies
 – Simulate movement trajectories
 – Additional moored test tags
 • Bering Sea
 • Shumagin Islands
Chapter 3

“Multi-scale movement of demersal fishes in Alaska”

• Deploy geomagnetic tags on Pacific halibut, sablefish, and potentially Pacific cod
• Develop model to reconstruct movement paths
 – Combine fine-scale and large-scale information
Chapter 3

Progress: Funded NURP proposal

Desert Star LLC
Pop-up satellite tag

• Magnetic field
• Light levels
• Temperature
• Depth
• Tilt
Chapter 3: Pacific halibut

2011 Pop-up satellite tag deployments:

A (10)
B (9)
C (9)
D (15)
E (9)

Additional harvest-recovery geomagnetic tags
Chapter 3: sablefish

- NOAA annual sablefish survey
 - 45 pop-up satellite tags
Chapter 3: Pacific cod

• Laboratory study
 – Satellite tag attachment
 – Barotrauma mitigation research

• Future deployment in Aleutians (?)
Chapter 3

• Reconstructing migration pathways
 – Extend depth-based model – e.g. Seitz 2006
 • Start and end locations
 • Magnetic field, depth, temperature, light
 • Estimated animal swim speed
 – Simulate paths – e.g. Righton and Mills 2008
 • Match environmental conditions of tagged fish
 – State-space or Bayesian models
 • Allows use of other information sources
 • More sophisticated insights on migration parameters
Activity summary

• Coursework
 – Fall 2010
 • Natural Resource Modeling
 • Fish Abundance
 • Statistics with R
 – Spring 2011
 • Population dynamics
 – Future: spatial statistics, fisheries statistics, geomagnetic principles
Activity summary

• Talks
 – AFS Alaska (November 2010)
 – Alaska Marine Science Symposium (January 2011)

• Upcoming talks
 – Biology Graduate Student Symposium (March 2011)
 – UAF Fisheries Seminar (March 2011)

• Posters
 – Models in Population Dynamics and Ecology (September 2010)
Activity summary

• **Timelines:**
 – **2011:**
 • Research Plan
 • Draft/submit for publication Chapter 1
 • Fieldwork: pop-up satellite tags
 – **2012:**
 • Draft Chapter 2
 • Begin analysis of archival tag data
 – **2013:**
 • Develop multi-scale movement model
 • Draft chapter 3
 • Submit for publication Chapter 2
 – **2014:**
 • Complete dissertation and defend
Thank you!
Chapter 3

Contour lines: 200 nT

Magnetic field (nano Tesla)
 Chapter 3

- Magnetic field gradients
- Movement trajectories
- Tag measurement resolution
Release locations, 1991 - 1993

12% not heard after release
14% < 5 positions
Dispersive movement pattern

Capture 7/8/92

7/12

7/18

7/12 – 8/10

8/15

8/18

9/10

9/11

9/18

7/8/92

Depth

0 m

400 m

5 Km
Chapter 1: Fine-scale movement

Locations \geq 1 day apart
Each symbol different animal