faculty listing

A Photo of  Ginny Eckert

Contact Information

Fisheries Division
221 Lena Point
17101 Point Lena Loop Rd
Juneau, AK 99801-8344
Phone: (907) 796-5450
Fax: (907) 796-5447
ginny.eckert@alaska.edu

Ginny Eckert Associate Professor

• Aquaculture • Fisheries Ecology • Fisheries Oceanography • Marine Biology • Marine Invertebrates

Affiliations

Specialties

  • ecology
  • management and aquaculture of commercially important marine invertebrates

Education

  • B.A. 1990 Dartmouth College (Biology)
  • M.S. 1994 University of Florida (Zoology)
  • Ph.D. 1999 University of California Santa Barbara (Ecology)

Research Overview

My research is driven by the belief that we can sustainably manage living marine resources and that population and early life history ecology can contribute to this process. Larval dispersal and connectivity remain as great questions in marine ecology and ones that are critical for management of living marine resources because many marine species and all commercially-important invertebrates, have larvae that disperse in the water column and are transported from adult habitat. Marine ecology has undergone a paradigm shift in the last several decades, as it is now appreciated that while larvae may spend a long duration in the plankton and can cross ocean basins, it may be more common that larvae are retained near adult populations or migrate in currents that travel far but return larvae to the vicinity of their source population. As we learn more about these early life stages and oceanographic processes, the “vagaries of the plankton” seem less vague and, in fact, appear quite well suited to the marine environment. Although many Alaskan fisheries are healthy, many invertebrate stocks have declined and some are depleted. I believe that knowledge of the early life history will provide essential information for regeneration of these stocks and will provide additional means for assessing population status and fishery management. My research has specifically focused on three crab species, Dungeness crab, snow crab and king crab; and the focus within each species is tailored to the questions of interest and the level of background information for that species.

Current Research Projects

  • Enhancement of habitat in Lynn Canal
  • Interactions of sea otters with commercially important macroinvertebrates
    As the number and range of sea otters in southeastern Alaska has grown, so has the level of concern among commercial and subsistence fishermen who harvest species such as geoduck clams, sea cucumbers, red sea urchins, and Dungeness crab. Areas previously open to commercial harvest have either been closed by state managers or have been determined by fishermen to no longer hold enough resources to warrant any fishing effort. Subsistence users report declining crab and shellfish harvests in areas recently recolonized by sea otters, as well. This project brings together graduate students (Zac Hoyt, Sean Larson, Alice Smoker) and faculty (me, Sunny Rice) from the University of Alaska Fairbanks School of Fisheries and Ocean Sciences and staff from the United States Fish and Wildlife Service (Verena Gill) to examine the population, distribution, movement, and diet of sea otters in the region.
  • Marine Ecosystem Sustainability in the Arctic and Subarctic
    I am the Director of this NSF-funded interdisciplinary graduate education and research training (IGERT) program in Marine Ecosystem Sustainability in the Arctic and Subarctic (MESAS). This program prepares professionals to solve problems arising at the interface between dynamic environmental and social systems. Graduates will be well-prepared to contribute to both the understanding and management of marine ecosystems to ensure ecosystem-based strategies for the sustainable use of living marine resources in the context of competing local, national, and international interests. Across the nation, and particularly in Arctic and Subarctic ecosystems, these competing interests demand complex solutions; requiring knowledge not provided in traditional graduate programs. Alaska is an ideal location to realize this new vision for an ecosystem-based approach to the sustainable use of living marine resources. Here, as elsewhere in the circumpolar north, anthropogenic and naturally-forced changes in climate, oceanography, marine biological communities and ecosystems, fisheries and maritime human communities are already dramatic and will have broad consequences. While these changes are particularly pronounced in the Arctic and Subarctic, similar forces are changing marine ecosystems throughout the world. Professional scientists educated in Alaska will have excellent preparation for a career in marine ecosystems anywhere in the world.
  • Recruitment of Dungeness crabs
    This research program examines temporal and spatial patterns of Dungeness crab larval and settler abundance in and around Glacier Bay, Alaska , one of the largest temperate marine reserves in the United States, as a step towards assessing the effectiveness of Glacier Bay as a marine reserve and to understand processes and mechanisms that affect replenishment of Dungeness crab stocks by settlement of young. My laboratory is examining relationships between late-stage larval abundance, settler abundance, and adult populations in locations with and without commercial fishing to make inferences to fished populations of Dungeness crabs in Southeast Alaska. I now have a valuable time series of eight years of late-stage larval and juvenile abundance, and as these individuals age will be able to relate them to adult populations. Collaborators, several graduate students (Heidi Herter, Quinn Smith) and many undergraduate students have participated in this research.
  • Aquaculture and enhancement of king crabs
    This research program on the early life histories of king crab centers around developing methodologies for hatchery rearing and assessing habitat requirements of newly settled individuals. I am the Science Team leader for the Alaska king crab research, rehabilitation, and biology (AKCRRAB) program that is investigating the potential for red king crab hatchery rearing and field outplanting. Current research projects at the hatchery in Seward focus on investigating methods of scaling up larval culture, including experiments on larval density and feeding. (Collaborators include Ben Daly [PhD student], Celeste Leroux [MS student], Sara Persselin and Robert Foy [both NOAA]). King crab research projects in Juneau include an experimental test of the functional importance of biogenic invertebrate habitats for juveniles (Jodi Pirtle, PhD student) as well as a study of growth, abundance of juveniles in the field, and a comparison of wild-caught and hatchery-raised individuals (with Sherry Tamone [UAS] and Miranda Westphal [MS student]).
  • Crab reproductive potential
    The incorporation of reproductive potential in the development of biological reference points is a pressing fishery management need for Bering Sea crab stocks. A review by the Center for Independent Experts determined that current assessments of reproductive potential are inadequate for this purpose. They determined that a quantitative understanding of the contribution of female crabs of differing life histories are needed to replace the current, crude measure of reproductive output based on total female biomass. This project includes concurrent laboratory experiments and field collections over a period of four years for Bristol Bay red king crab and eastern Bering Sea snow crab to provide data to improve assessment of reproductive potential and understanding population dynamics for these two stocks. This is a collaborative project with Joel Webb (PhD student), Gordon Kruse (UAF), and Kathy Swiney (NOAA).

Publications

Swiney, K.M., W.C. Long, G.L. Eckert and G.H. Kruse. 2012. Red king crab, Paralithodes camtschaticus, size-fecundity relationship and inter-annual and seasonal variability in fecundity. Journal of Shellfish Research 31(4):925-933.

Jensen, P., M. Purcell, F. Morado and G.L. Eckert. 2012. Development of a real-time PCR assay for detection of planktonic red king crab (Paralithodes camtschaticus) (Tilesius 1815) larvae. Journal of Shellfish Research. 31(4):917-924.

Pirtle, J.L., G.L. Eckert, and A.W. Stoner. 2012. Habitat structure influences survival and predator-prey interactions of early juvenile red king crab (Paralithodes camtschaticus). Marine Ecology Progress Series 465:169-184. DOI 10.3354/meps09883

Pirtle, J.L., S.N. Ibarra, and G.L. Eckert. 2012. Nearshore benthic community structure compared between inner coast and outer coast sites in Southeast Alaska. Polar Biology 35:1889-1919. DOI 10.1007/s00300-012-1231-2

Daly, B., J. Swingle and G.L. Eckert. 2012. Dietary astaxanthin supplementation for hatchery-cultured red king crab, Paralithodes camtschaticus, juveniles. Aquaculture Nutrition. DOI: 10.1111/j.1365-2095.2012.00963.x

Daly, B., J. Swingle, and G.L. Eckert. 2012. Increasing hatchery production of juvenile red king crabs (Paralithodes camtschaticus) through size grading. Aquaculture 364-365: 206-211.

Daly, B., A.W. Stoner, and G.L. Eckert. 2012. Predator-induced behavioral plasticity of juvenile red king crabs (Paralithodes camtschaticus). Journal of Experimental Marine Biology and Ecology 429:47-54.

Copeman, L.A., A.W. Stoner, M.L. Ottmar, B. Daly, C.C. Parrish, and G.L. Eckert. 2012. Total lipids, lipid classes, and fatty acids of newly settled red king crab (Paralithodes camtschaticus): Comparison of hatchery-cultured and wild crabs. Journal of Shellfish Research 31:153-165.

Smith, Q.T. and G.L. Eckert. 2011. Spatial variation and evidence for multiple transport pathways for Dungeness crab (Cancer magister) late-stage larvae in southeastern Alaska. Marine Ecology Progress Series 429: 185-196.

Kruse, G.H., G.L. Eckert, R.J. Foy, R.N. Lipcius, B. Sainte-Marie, D.L. Stram, and D. Woodby, eds. 2010. Biology and Management of Exploited Crab Populations under Climate Change. Alaska Sea Grant College Program, University of Alaska Fairbanks, Fairbanks.

Swiney, K.M., J.B. Webb, G.H. Bishop, and G.L. Eckert. 2010. Variability and measurement of Alaskan red king crab fecundity. Pages 265-282 in G.H. Kruse, G.L. Eckert, R.J. Foy, R.N. Lipcius, B. Sainte-Marie, D.L. Stram, and D. Woodby, editors. Biology and Management of Exploited Crab Populations under Climate Change. Alaska Sea Grant College Program, University of Alaska Fairbanks, Fairbanks.

Gaines, S. D., S.E. Lester, G.L. Eckert, B.P. Kinlan, R. Sagarin, B. Gaylord. 2009. Dispersal and geographic ranges in the sea. Pages 227-249 in J. Witman and K. Roy, editors. Marine Macroecology. Univ. Chicago Press, Chicago.

Cieciel, K., B.J. Pyper, and G.L. Eckert. 2009. Tag retention and effects of tagging on movement of the sea cucumber Parastichopus californicus in Southeast Alaska. North American Journal of Fisheries Management 29(2): 288-294. doi: 10.1577/M07-194.1

Daly, B., J.S. Swingle, and G.L. Eckert. 2009. Effects of diet, stocking density, and substrate on survival and growth of hatchery-cultured red king crab (Paralithodes camtschaticus) juveniles in Alaska, USA. Aquaculture 293: 68-73.

Eckert, G.L. 2009. A synthesis of variability in nearshore Alaskan marine populations. Environmental Monitoring and Assessment 155(1-4):593-606. http://dx.doi.org/10.1007/s10661-008-0458-4.

Eckert, G.L., D.R. Bellwood, and R.J. Whittaker. 2009. Southeast Alaska marine ecology and biogeography. Journal of Biogeography 36: 385.

Weingartner, T., L. Eisner, S. Danielson and G. Eckert. 2009. Southeast Alaska: Oceanographic habitats and linkages. Journal of Biogeography 36: 387-400.

Herter, H.L. and G.L. Eckert. 2008. Transport of Dungeness crab (Cancer magister) megalopae into Glacier Bay, Alaska. Marine Ecology Progress Series 372:181-194.

Porter, S.S., G.L. Eckert, C. J. Byron and J. L. Fisher. 2008. Comparison of light traps and plankton tows for sampling brachyuran crab larvae in an Alaskan fjord. Journal of Crustacean Biology. 28(1): 175-179.

Eckert, G.L. 2007. Spatial patchiness in the sea cucumber Pachythyone rubra in the California Channel Islands. Journal of Experimental Marine Biology and Ecology 348: 121-132.

Eckert, G.L. 2007. Sea Cucumbers in Encyclopedia of the Rocky Intertidal edited by Mark Denny and Steven Gaines. University of California Press.

Webb, J.B., G.L. Eckert, T.C. Shirley, and S.L. Tamone. 2007. Changes in embryonic development and hatching in the snow crab, Chionoecetes opilio, from the eastern Bering Sea with variation in incubation temperature. Biological Bulletin 213: 67-75.

Webb, J.B., G.L. Eckert, T.C. Shirley, and S.L. Tamone. 2006. Changes in zoeae of the snow crab, Chionoecetes opilio, with variation in incubation temperature. Journal of Experimental Marine Biology and Ecology 339:96-103.

Shanks, A. L. and G.L. Eckert. 2005. Life history traits and population persistence of California current fishes and benthic crustaceans: Solution of a marine drift paradox. Ecological Monographs 75(4):505-524.

Eckert, G.L. 2003. Effects of the planktonic period on marine population fluctuations. Ecology 84: 372-383.

Grantham, B., G.L. Eckert, and A.L. Shanks. 2003. Dispersal potential of marine invertebrates in diverse habitats. Ecological Applications 13:S108-S116.

Eckert, G.L., J.M. Engle and D.J. Kushner. 2000. Sea star disease and population declines at the Channel Islands. Proceedings of the Fifth California Islands Symposium. Minerals Management Service 99-0038: pp. 390-393.

Micheli, F., K.L. Cottingham, J. Bascompte, O.N. Bjørnstad, G.L. Eckert, J.M. Fischer, T.H. Keitt, B.E. Kendall, J.L. Klug, and J.A. Rusak. 1999. The dual nature of community variability. Oikos 85: 161-169.

Eckert, G.L. 1998. Larval development, growth, and morphology of the sea urchin Diadema antillarum. Bulletin of Marine Science 63: 443-451.

Eckert, G.L. 1995. A novel, larval feeding strategy in the tropical sand dollar, Encope michelini (Agassiz): Adaptation to larval food limitation and an evolutionary link between planktotrophy and lecithotrophy. Journal of Experimental Marine Biology and Ecology 187: 103-128.

Current Students

Asia Beder

Asia Beder
MS Thesis Topic: Nutrition and condition of red king crab larvae
ambeder@alaska.edu

Zachery Hoyt

Zac Hoyt
PhD Dissertation Topic:  Recolonization, prey selection and resource competition by sea otters, Enhydra lutris, in southern southeast Alaska.
znhoyt@alaska.edu

Sonia Ibarra

Sonia Ibarra
PhD Dissertation Topic: Community ecology of Southeast Alaska kelp forests along a gradient of sea otter occupation.
snibarra@alaska.edu

Courtney Lyons

Courtney Lyons
PhD Dissertation Topic: Examining Pribilof Island blue king crab recovery failure from social and ecological perspectives.
cdlyons@alaska.edu

Andrew Olson

Andrew Olson
MS Thesis Topic: Spatial variability in morphometric size at maturity and reproductive timing in golden king crab (Lithodes aequispinus).
apolson@alaska.edu

Joel Webb

Joel Webb
PhD Dissertation Topic:  Reproductive Potential of Snow and Tanner Crab
joel.webb@alaska.gov

Past Students

Ben Daly
PhD Fisheries 2012. Dissertation title: "Red King Crab Hatchery Culture and Ecological Requirements: Applications for Stock Enhancement"
ben.daly@noaa.gov

Sean Larson
MS Fisheries 2012. Thesis title: " Impacts of Sea Otter Predation on Commercially Important Sea Cucumbers (Parastichopus californicus) in Southeast Alaska"
sdlarson@alaska.edu

Miranda Westphal
MS Fisheries 2011. Thesis title: "Growth Physiology of Juvenile Red King Crab, Paralithodes camtschaticus, in Alaska"
miranda.westphal@hotmail.com

Jodi Pirtle
PhD Fisheries 2010. Thesis title: "Habitat Function in Alaska Nearshore Marine Ecosystems"
jodipirtle@gmail.com

Celeste Leroux
MS Marine Biology. Thesis title: "Nutrition and Technique for Large Scale Larval Culture of the Red King Crab (Paralithodes camtschaticus) and Blue King Crab (Paralithodes platypus)"
celesteleroux@gmail.com

Dan Okamoto
MS Fisheries 2009. Thesis Title: Competition and Recruitment in Southeast Alaskan Subtidal Kelp Communities. 
okamoto@lifesci.ucsb.edu

Quinn Smith
MS Fisheries 2008. Thesis Title: Spatial Variation and Evidence for Multiple Transport Pathways for Dungeness Crab (Cancer magister) Late-stage Larvae in Southeastern Alaska
quinn.smith@alaska.gov

Heidi Herter
MS Fisheries 2007.  Thesis Title: Transport of Dungeness crab (Cancer magister) megalopae into Glacier Bay, Alaska
hlherter@alaska.edu

Joel Webb
MS Fisheries 2005. Thesis Title: The Effect of Temperature on the Duration of Embryonic Development, Larval Morphology, and Larval Fitness of Snow Crab (Chionoecetes opilio) from the Eastern Bering Sea
joel.webb@alaska.gov

Kristin Cieciel
MS Fisheries 2004. Thesis Title: Movement of the Giant Red Sea Cucumber
kristin.cieciel@noaa.gov