Growth of *Metridia pacifica* (Copepoda: Calanoida) nauplii in the laboratory

ALEXEI I. PINCHUK¹ & A. J. PAUL²

¹University of Alaska Fairbanks, Institute of Marine Science, P.O. Box 757220 Fairbanks, Alaska 99775, USA
²University of Alaska Fairbanks, Institute of Marine Science, Seward Marine Center Laboratory, P.O. Box 730 Seward, Alaska 99664, USA

Received 18 November 1997; accepted 19 May 1998

Abstract: This paper presents data on naupliar stages of *Metridia pacifica* Brodsky reared in the laboratory. Eggs were obtained from females collected in the southeastern Bering Sea and the Gulf of Alaska. The feeding stages were fed a surplus of food so development was regulated primarily by temperature. The stage durations for nauplii stages I–VI (NI–VI) were estimated for animals reared at 3, 6 and 9°C. Intermolt periods at 3°C were 49–120 h for the stages from egg to NI IV and 33–69 and 27–74 h at 6 and 9°C, respectively. Growth, expressed as length, was linear. Growth from NI to the end of NVI took 23–30 d in the laboratory and rates were similar to those previously estimated from field studies in the Bering Sea.

Key words: *Metridia*, Bering Sea, Gulf of Alaska, copepod, nauplii

Introduction

The copepod *Metridia pacifica* Brodsky, 1950 is common in the oceanic waters of the subarctic Pacific and Bering Sea (Batchelder 1985, 1986; Coyle et al. 1996). In the southeastern Bering Sea, its nauplii are one of the most important prey of larval walleye pollock *Theragra chalcogramma* Pallas (Hillgruber et al. 1995), one of the region’s most abundant fish (Wesp et al. 1993). However, knowledge of the recruitment biology of *M. pacifica* is limited (Batchelder & Miller 1989). Data on developmental biology, hatching time, and growth rates of different stages of *M. pacifica* will improve the understanding of temporal variations in feeding success of the larval walleye pollock (Paul et al. 1996). This paper presents information on naupliar development and growth at different temperatures for *M. pacifica*.

Materials and Methods

Nauplii of *M. pacifica* from the Aleutian Basin in the southeastern Bering Sea were collected in April of 1992 and 1993 (Paul et al. 1996) and preserved for morphometric analyses. In this study the first to sixth naupliar stages are termed NI–NVI, respectively. Live nauplii (NV to NVI) for growth experiments were caught in the Gulf of Alaska near the town of Seward in March 1997 using a 0.5-m-ring plankton net with 140-μm mesh. Nauplii were also reared from eggs produced by live captives. Living females were collected in both the south-
feeding stages NI–II than in those of NIII–IV (Table 1). Development times for each stage at 6°C and 9°C were faster than for those at 3°C, and the overall developmental patterns were also linear with \(y = 0.018x + 0.416 \), \(r^2 \geq 0.97 \), and \(y = 0.019x + 0.560 \), \(r^2 \geq 0.97 \) respectively. The ratio of body length divided by body width increased considerably from stage NIII through NIV (Fig. 2). The guts of the feeding stage nauplii were full of green material. The fidelity to linear developmental patterns seen in the non-feeding and feeding stages suggests that development in the feeding stages was not markedly impaired by food availability.

Growth

When the stage specific measurements of body length of both laboratory reared specimens and those that had naturally developed in the sea were combined, the changes in length were
Fig. 4. A. The changes in body length (µm) of *Metridia pacifica* nauplius stages NI–IV reared at 3°C, 6°C and 9°C (vertical bars = SD). B. The growth, expressed as change in length with time, of nauplius stages NI–IV reared at 3°C, 6°C and 9°C. Length values are logarithmically transformed (horizontal bars = SD).

Generally linear (Fig. 3). The body length measurements of NIII and NIV field-caught specimens did not differ significantly from those of laboratory reared specimens (*p* > 0.05). These results suggest that laboratory conditions did not negatively alter the relationship between stage and size.

Temperature did not seem to affect stage specific body length (Fig. 4A). The changes in body length with time from stage NI through NIV seemed to take a longer period to grow from NIII into NIV with a larger increase in body length. However, logarithmically transformed data was approximated by a linear function (Fig. 4B).

Discussion

We were unable to rear *Metridia pacifica* from eggs past NIV but are unsure why they died. This species undergoes strong diel vertical migrations (Vinogradov 1968; Batchelder 1985; Hattori 1989). Nauplii can be found at 500-m depth (Batchelder 1985), while they are most numerous in the upper 100-m layer (Batchelder 1985). Perhaps, being unable to move vertically in the 500-ml beakers caused stress that resulted in the deaths of older nauplii. Little is known about the diets of *Metridia* nauplius stages. It could be that some bacteria or heterotrophic protozoans are important food for the nauplii (Roff et al. 1995) and our diet did not contain all the elements necessary for the nauplii to survive. Alternatively, the phytoplankton we fed the later stages may have had inhibitory compounds that were detrimental to the nauplii (Poulet et al. 1994, 1995).

In marine copepods growth rate may change with stage (Paffenholz & Harris 1976; Klein-Breteler et al. 1982; Kimoto et al. 1986; Peterson 1986). The pattern of early development of *M. pacifica* obtained in this study largely conforms to previously described patterns (Landry 1983, Peterson 1986). It features the relatively short duration of the pre-feeding NI–II and longer duration thereafter. Landry (1983) suggested that the NI–II are short because they do not feed and that NIII is longer because it needs to recover the weight lost during the non-feeding stages. However, the overall developmental pattern from nauplii to adults, with the
possible exception of copepodid stage V for some species, is generally approximated by a linear function (Miller et al. 1977; Landry 1983; Peterson 1986; Sabatini & Kiorboe 1994) like that which we observed for *M. pacifica*.

The stage vs length measurements for *M. pacifica* show the same general development patterns seen in *M. lucens* (Gibbons 1938; Ogilvie 1953) (Fig. 3). It has been suggested that despite some differences in thermally related specific growth rates “an exponential model provides the best general approximation of the growth of marine copepods over the entire life cycle from egg to adult” (Huntley & Lopez 1992: p. 207). Our linear approximation of logarithmically transformed length growth data for most of the stages of *M. pacifica* seems to be consistent with this assumption.

This project was part of a larger study that was examining how the timing of copepod reproduction might impact the feeding success of different cohorts of walleye pollock larvae. Walleye pollock larvae eat primarily NIV–NVI *Metridia* nauplii and seldom eat the younger stages (Hillgruber et al. 1995). Length growth approximations (Fig. 4B) can be used to estimate the duration of various phases of *Metridia* life history. Based on our growth rate studies at 3°C it takes about 12 d for *M. pacifica* to go from egg to NIV, while at 6°C it takes only 8 d.

At 3°C it would take about 40 d to grow from egg to adult, if the development rates remain constant for the older nauplii and copepodids. The generation time for adult *M. pacifica* of 2.4- to 3.6-mm length at 3°C would be 56–65 d from the length growth model (Fig. 4B). Vidal & Smith (1986), using cohort analysis, estimated *M. pacifica* generation time in the southeastern Bering Sea in spring at 50–55 d assuming the copepodid phase took 30–35 d. Our results show that the naupliar phase takes 23–30 d and thus the laboratory growth rate measurements appear to approximate *M. pacifica* growth in vivo as estimated by Vidal & Smith (1986). However, the Bering Sea is a food rich region and in other parts of the open subarctic Pacific food may be more limiting and generation times significantly greater (Batchelder 1985). Further study, using lower food concentrations, would improve our understanding of the interrelationship between food, temperature and the growth of *M. pacifica* nauplii.

Acknowledgments

This research was sponsored by NOAA’s Coastal Ocean Program and is contribution FOCI-B-306 to the Fisheries–Oceanography Cooperative Investigations. We thank Dr J. Napp, Ms L. Britt, NOAA and UAF staff and the crew of the R/V Miller Freeman for help with collections. This is contribution number 2489 from the Institute of Marine Science, University of Alaska Fairbanks.

Literature Cited

