Energy density of early life stages of fishes can be an indicator of growth and survival potential. Seasonal variability in fish condition may indicate differential allocation of resources (i.e., to growth or storage) and may help predict survival through the fishes' first winter. In the present study, seasonal bioenergetics data will be collected over three years, 2008-2010, to determine the seasonal pattern of energy density of age-0 walleye pollock (Theragra chalcogramma) and Pacific cod (Gadus macrocephalus) and to examine the relationship between energy content of age-0 juveniles and the abundance of age-1 fish the following summer. While survival and recruitment of walleye pollock and P. cod are affected by interannual environmental changes, including the extent of the cold pool, processes affecting survival, particularly during the larval stage, during which larvae are subject to local advection and current patterns, are not well understood. Condition factors, including energetic content of larvae, as well as prey composition, prey quality, and temporal and spatial distribution patterns of prey, may help to explain the variability in survival and recruitment success. To better understand these processes, larval walleye pollock and Pacific cod will be sampled during the following annual surveys from spring through fall: NPCREP (early spring), BEST/BSIERP and MACE (early summer), FOCI (September), and BASIS (late fall). To date, walleye pollock energetics samples from BASIS 2007 (age-1) and BEST/BSIERP 2008 (age-0), as well as select zooplankton samples, which will be used as indicators of prey quality, have been analyzed. The energy content of walleye pollock sampled during BASIS 2007 was well above previous years, indicating adequate energy content for overwinter survival. Because overwintering survival may be an important component of recruitment success, these results will be essential in improving our understanding of recruitment variability of these important groundfish stocks in the eastern Bering Sea.